Exercise 79

A chemist's 50-Trillion Angstrom Run (see Exercise 1.78) would be an archeologist's 10,900 cubit run. How long is one cubit in meters and in feet? $\left(1 \AA=1 \times 10^{-8} \mathrm{~cm}\right)$

Solution

Since we want to know what one cubit is, put it in the denominator of the first conversion factor.

$$
\frac{50 \times 10^{12} \AA}{10,900 \text { cubits }} \times \frac{1 \times 10^{-8} \mathrm{~cm}}{1 \AA} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \approx 0.46 \frac{\mathrm{~m}}{\mathrm{cubit}}
$$

Start the same way and convert to feet this time.

$$
\frac{50 \times 10^{12} \AA}{10,900 \text { cubits }} \times \frac{1 \times 10^{-8} \mathrm{~cm}}{1 \AA} \times \frac{1 \text { 次 }}{2.54 \mathrm{~cm}} \times \frac{1 \mathrm{ft}}{12 \text { 稀 }} \approx 1.5 \frac{\mathrm{ft}}{\mathrm{cubit}}
$$

